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What science does, in fact, is to select the simplest formula that will fit the facts...If the 
simplest formula ceases, after a time, to be applicable, the simplest formula that remains 

applicable is selected, and science has no sense that an axiom has been falsified. 
B. Russell [l] 

ABSTRACT 

The relation of kinetic constants calculated by various differential equations was studied 
using calcium carbonate as a model substance. Strict correlation has been found between the 
kinetic constants (A,E,n,m,p). indicating a very formal character and the practical equiva- 
lency of the various differential equations used for evaluation of the thermoanalytical curves. 
This is an important reason for the kinetic compensation effect, C.E. (i.e., the linear In A vs. E 
function), which exists in the cases of heterogeneous, homogeneous, isothermal and non-iso- 
thermal examinations alike, enhancing the complexity of the mechanism of the different 
thermal processes. Correlations similar to the C.E. have also been revealed between the 

coefficients of a sixth order polynom fitted to the measured DTG curves. 
Exploiting the formal character of the usual differental equations, the idea of the 

compensation effect of a single measurement (C.E.), can be introduced using three or four 
various differential equations for the calculation of the kinetic constants. This affords the 
quantitative examination of the effect of the measuring circumstances on the mechanism of 
the investigated thermal process. 

INTRODUCTION 

Besides the analytical use of thermoanalytical investigations and the 
attempts to obtain a kinetic analysis from the data, a third tendency can be 
ascertained, namely to obtain information which can be of direct use in 
technological problems. In this respect the requirement is the practical 
characterization of the behaviour of the material within specified practical 
circumstances, physical processes and chemical mechanisms. There are, 
however, problems inherent in the technique of thermal analysis which could 
hinder its use in solving technological problems. 
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In the last decades an immense amount of work has been carried out to 
solve these problems of thermal analysis and its application has been 
extended to new domains. These widespread thermoanalytical efforts have 
furnished enough data for Sestak [2] to present a general and theoretical 
review on the subject. Independent of this it can be stated that the develop- 
ment of thermal analysis has been determined by the principle of seeking 
constants characteristic of the reactions undergone by the examined subs- 
tance. It is a well known fact, however, that the measured data, namely the 
peak temperature and the calculated results (i.e., the kinetic constants), are 
the functions of the measuring circumstances, the sample mass, the particle 
size, the packing, “inert” additives, the heating rate, the shape and the 
material of the sample holder, the atmosphere, etc. It is a natural conse- 
quence that the “‘elimination” of the effects of the measuring circumstances has 
become an important task instead of the determination of their effects. 

This is just one of the important reasons for the very comprehensive 
studies which have been reported on the development of methods and 
equations-mainly based on the Arrhenius equation-which would describe 
the processes [3- 151. Numerous models have been suggested in the literature 
and methods were developed to look for the differential equation which 
could represent the measured data with the greatest proximity (e.g., refs. 4, 
13, 16-21). 

This was the method used by Fong and Chen [22], which is chosen here as 
an example. They looked for the best solution to represent the decomposi- 
tion of magnesium hydroxide and they used in the trial-and-error procedure 
the 17 differential equations shown in Table 1 taken from the publication by 
Gallagher and Johnson [23]. This procedure became particularly important 
because the non-isothermal measurements appeared to be a more simple 
approach to investigate kinetic parameters and gave much more data in 
comparison with the roundabout and lengthy isothermal measurements (e.g., 
refs. 17, 18, 21). 

Although many measuring methods and equations have been recom- 
mended to characterize the thermal processes (e.g., decomposition), the 
comparison of the thermal analysis curves and the calculation of data has 
not been completely possible in spite of the far-reaching investigations of 
measuring circumstances (e.g., refs. 3-6, 24) errors and accuracy (e.g., refs. 3, 

7). 
Some problems “could be shoved under the carpet” [25] by very sensible 

(or sophisticated?) and very expensive instruments, but the problem of 
comparing data measured under different circumstances remains open. The 
problem of description is obviously unsolved too. This is evident from 
critical, sceptical or even ironical opinions (e.g., refs. 25-29). 

An important result of the kinetic research is the observation of the 
kinetic compensation effect, C.E., namely the linear relationship between the 
logarithm of the pre-exponential factors and the activation energies. The 



25 

TABLE 1 

Kinetic functions suggested for the trial-and-error procedure 

g(a) f(a) Mechanism 

1 a a0 

2 a2 a-’ 

3 a’/2 a’/2 Power law 

4 a’/3 a2/3 

5 a’/4 a3/4 

6 1 -(l- a)‘j2 

7 I-( 1 - a)‘13 

8 -ln(l-a) 
9 [-ln(l-a)]“‘.’ 

10 [-ln(l-a)]1/2 
11 [-ln(l-(~)]‘/~ 
12 [-ln(l-a)]1/4 
13 a+(l-a) ln(l-a) 
14 1-2a/3-(1-a)2/3 

15 [l -(l- a)‘1312 

16 (l-a)-‘-1 
17 (l-a)-“r-l 

(1 - a)‘12 

(1 - a()213 

(1 -a) 
(1-a)[-ln(l-a)]1/3 
(1-a)[-in(l-a)]‘/2 
(1-a)[-ln(l-a)]2/3 
(1-a)[-ln(l-a)]3/4 
[-ln(l-a)]-’ 
[-ln(l-a)]-’ 

(l-a) ‘I’-ln(l-a)-’ 
(1- a)’ 
(1 - a)‘.’ 

Contracting geometry 

Erofeev 

Diffusion controlled, 2D 
Diffusion controlled, 3D 
Jander 
Second order 
One and a half order 

C.E. can be observed in many cases of heterogeneous reactions. The idea of 
regarding the C.E. as a consequence of the errors of measurements or as an 
imperfection of the Arrhenius equation has never occurred for the homoge- 
neous phase, especially for isothermal measurements, so these could be the 
norms of the ironic criticism of the measurements in the heterogeneous 
phase. According to Gam [27], for example, “The Arrhenius equation is 
widely used in heterogeneous kinetics for two reasons. First, the relationship 
is well established in homogeneous kinetics; second, the form of the equation 
assures the user that number for the constants in the equation can be 
calculated.. . ” In accordance with this remark, it would seem better to give 
up the use of the Arrhenius equation applied to heterogeneous phase 
reactions. However, according to Gam again [27], the C.E. can give some 
information about mechanism and is not just a formal relationship, because 
“From examination of the general nature of the “kinetic compensation 
effect”, it appears that the reactions involved in these examples have a 
feature in common-a principal reaction in which some parameter changes 
the temperature variation without changing the general nature of the reac- 
tion... the C.E. may be instructive in deducing the nature of the temperature 
dependence.” 
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The basis of such and similar contradictions is the fact that the mecha- 
nisms of thermal reactions are equally complicated in homogeneous, hetero- 
geneous, isotherm and non-isotherm examinations. The C.E. is closely re- 
lated to the description of the thermal processes and it was noted a long time 
ago both in homogeneous phase and in heterogeneous catalytic reactions. 
Cremer [30] attributed the C.E. to two sources, namely the unidirectional 
change of entropy, and enthalpy of activation of superimposed part processes 
and experimental errors; however, these can hardly explain the linearity of 
the C.E. reassuringly. 

The C.E. is also noticeable in thermoanalytical data because of the greatly 
extended kinetic analysis of the measured curves [31,32], but this was only 
recently realized (e.g., refs. 33-37) and is often not commented upon at all 
(e.g., refs. 17, 18, 38, 39). 

From these facts and opinions it was decided in the present study to 
examine how the various equations on the basis of the Arrhenius relation- 
ship can express the superimposition of part-processes and can be related by 
a compensation effect and by the experimental conditions including in- 
dustrial experience. 

EXPERIMENTAL AND METHODS 

Calcium carbonate was chosen as a model substance because much of the 
data available regarding its decomposition and the products .of decomposi- 
tion are well defined and used in various industrial processes, e.g., lime 
kilmng, production of cement, desulphurization of flue gases, etc. 

Gs 
In the Figures 
and Tables: 

1 l 

2 x 
3 + 

4 5 : 
6 H 

Fig. 1. The shapes of the samples. 
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The sample mass and the heating rate ranged from 0.8 to 3460 mg and 
from 3 to 13 K mm-‘, respectively. The shape of the sample (Fig. 1) and the 
type of balance (Derivatograph, Heraeus TGA-500, Mettler) * were also 
varied. 

The following differential equations suggested by Sestak [8] on a theoreti- 
cal basis were used for the evaluation of the decomposition data of the 
calcium carbonate 

-da/dt E A exp( -E/RT)( 1 - a)” 0) 

-da/di =A exp( -E/RT)( 1 - a)nam (2) 

-da/di=A exp(-_/RT)(l -a)n[-ln(l -a)]’ (3) 

-da/dt =A exp( -E/RT)( 1 - a)“a’“[ -ln( 1 - a)]’ (4) 

where -da/dt is the rate of decomposition; (1 - a) is the reaction coordi- 
nate; A is the pre-exponential factor; E is the activation energy; R is the gas 
constant; T is the absolute temperature; and n, m and p are orders of the 
reaction. 

According to the suppositions, these equations express the thermal decom- 
position, its reversibility, the nucleation, the diffusion and the combination 
of these processes [8], .which are obviously important in the case of calcium 
carbonate.. 

RESULTS AND DISCUSSION 

The C.E. in the case of various equations 

The data measured in sample holder 1 (Fig. 1) with a heating rate of 9 K 
min-’ can be seen in Table2. Using very different measuring conditions the 
calculated data have been collected in Table 3. 

The C.E. is also observed in this case. In addition to this, the results make 
it possible to show the existence of the C. E. even in the parameter range where 
the separate kinetic constants cannot have any direct physical meaning. 

Another important fact is that the C.E. connects different kinetic models 
[40,41]. As an example, Fig. 2 shows the data for runs using 200 mg and 2000 
mg samples given in Table 2. It is noted in part B of Table 2 how strict the 
correlation is among the “kinetic constants” calculated using four differen- 
tial equations. It is obvious from Tables 2 and 3 that not the kinetic 

* Certain commercial equipment is identified in this paper in order to specify adequately the 
experimental procedure. In no case does identification imply recommendation or endorse- 
ment by the authors, nor does it necessarily imply the equipment identified is necessarily the 
best available for the purpose. 
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TABLE 2 

Variation in kinetic parameters (calculated using different equations) 

Part A 
Sample 

mass (mg) 
Temp. (“C) 

In A 
E (kJ mole-‘) 
n 

r eqn. (1) 

In A 
E (kJ mole-‘) 
n 
m 

r eqn. (2) 

In A 
E (M mole-‘) 
n 

P 
r eqn. (3) 

lllA 

E (kJ mole-‘) 
n 
m 

P 
r eqn. (4) 

Part B 

al 
a0 

r 

100 200 400 1000 2000 

680-820 670-840 680-850 740-905 830-908 

19.69 19.36 17.55 16.25 20.69 
229.91 226.85 217.77 213.79 260.22 

0.45 0.38 0.39 0.41 0.52 
0.9986 0.9953 0.9979 0.9980 0.9937 

138.95 - 13.20 41.71 
1282.35 - 68.67 446.33 

1.35 0.19 0.40 
- 4.25 1.28 -1.22 

0.9994 0.9969 0.9982 

-5.80 - 6.43 
0.14 - 3.56 
0.32 0.34 
0.97 0.91 
0.9990 0.9967 

83.95 - 29.87 39.05 18.23 -0.20 
795.95 -217.31 420.7 1 232.80 57.74 

0.03 0.75 -0.04 0.39 0.62 
- 2.24 1.86 - 1.07 -0.09 0.66 

0.9990 0.9975 0.9982 0.9980 0.9955 

141.32 - 30.34 41.36 - 1.16 -2.25 
1303.92 -218.98 442.82 41.62 32.28 

1.95 0.79 0.17 - 0.74 - 1.15 
-5.79 -0.11 -0.65 3.95 5.17 

1.43 2.00 -0.54 - 3.00 -4.14 
0.9994 0.9998 0.9982 0.9996 0.9985 

lnA=a,E+a, 
- 6.3020 - 5.7839 

0.1133 0.1112 
1.0000 0.9999 

- 5.4843 
0.1058 
1.0000 

- 5.6422 -5.9071 
0.1026 0.1022 
0.9999 0.9998 

constants but the slope of the C.E. plot can be related to the change of the 
sample mass and other parameters. 

Although there is an extreme variation in values of the kinetic constants 
the fitness of the description is very remarkable and practically independent 
of the type of differential equation used [40,41]. Similar results were found 
by Criado and Gonzales [42] for CdC4, MnCO, and PbCO,, verifying 
Varhegyi’s [ 151 opinion that “if the number of parameters is too large, 
,different sets of values of the parameters can provide an acceptable fit 
between the experimental data and the corresponding theoretical data”. In 
agreement with results of Guarini et al. [43], it is obvious that numerous 
different kinetic equations give linear or semilinear Arrhenius plots with similar 
fit and as a result the selection of the rate determining process seems to be 
practically impossible and arbitrary on this basis. 
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Fig. 2. The (C.E.), in the case of calcium carbonate. The kinetic constants were calculated by 
four different equations. X, 200 mg; 0, 1000 mg; 0, 2000 mg; 0, from industrial results. 

The same conclusions can be deduced from Fong and Chen’s [22] very 
accurate measurements and calculations, though they emphasized that “it is 
very difficult to determine the right reaction mechanism, because at least 
half of the tested g(a) functions give correlation coefficients higher than 
0.995”, and they chose da/dt = k( 1 - (Y)‘.’ as the kinetic expression describ- 
ing the thermal decomposition of magnesium hydroxide. This choice is, 
however, really arbitrary because in the kinetic data they obtained using 17 
various equations (Table l), the correlation coefficient is higher than 0.98 1 in 
each case, and shows a C.E. (Fig. 3), which can be described with very high 
accuracy by the following relationship, for 15 sets of data points (with E in 
kJ mole-‘): 

by Coats and Redfern’s method 

In A = 0.18919B - 6.6205 (r = 0.9994) 

by Satava’s method 

1nA =O.l799B-6.1517 (r=0.9995) 

These data indicate that the two methods give practically equivalent data. 
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Fig. 3. The (C.E.), in the case of magnesium hydroxide. The kinetic constants were calculated 
by 15 various differential equations. 

On a similar basis it must be concluded that other methods must also be 
regarded as arbitrary choices (e.g., refs. 18, 20, 44). The thermal decomposi- 
tion of calcium oxalate, kaolin, calcite, montmorillonite, and Marathon-coke 
was analysed by using 10 differential equations [21] and the C.E. was also 
demonstrated in all these cases. Figure 4 shows the calculated data for kaolin 
and calcium oxalate as examples. 

1nA 

Fig. 4. The (C.E.), in the case of kaolin and calcium oxalate. The kinetic constants were 
calculated by 10 different differential equations. 0, Calcium oxalate; X , kaolin. 
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Connections between the logarithm of the pre-exponential factor and reaction 
order 

It is necessary to extend the idea of the C.E. shown in the measurements 
reported here (Tables 2 and 3) because of the correlation between the 
activation energy ( E) and the values of the different reaction orders (n, m, p). 

The relationships between E vs. n, E vs. m, and E vs. p values are linear 
and, in contrast to the In A vs. E function, they change more considerably 
with the measuring conditions. In addition to these relations, it follows from 
the C.E. that there is a relationship between the logarithm of the pre-ex- 
ponential factor and reaction order. 

There are also close relationships between the reaction orders and initially 
it would seem that these relationships are independent of the type of 
differential equation used for their calculation. The interdependence between 
n vs. m, n vs. p, and m vs. p values are shown in Figs. 5-7. The relation 
between the reaction orders was shown with reasonably high correlation 
coefficients. The value of r, for example, for n vs. m is higher than 0.8878 
even in the case of linear regression and omitting the four extremely high 
values [see data in Table3, eqn. (4) with sample form 31. 

Fig. 5. The interdependence between the reaction orders n and m. 
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n = 0.43~ + 0.35 
(r=O .9976) 

2,5 
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-10 -;ly” 
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X 
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Fig. 6. The interdependence between the reaction orders n and p. 

m = -1.02p - 0.14 
(l-.0.9959) 

Fig. 7. The interdependence between the reaction orders m and p. 
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The constants of polynoms 

The measured DTG curves as a function of time could be described by a 
sixth order polynom [eqn. (5)] with a high degree of accuracy. 

-da 
- = A + Bt + Ct2 + Dt3 + Et4 + Ft5 + Gt6 

dt (5) 
A connection may be sought among these coefficients and this is shown in 

Figs. 8- 11. These show a very close connection between the coefficients 
reminiscent of the C.E., though the values of these coefficients show signifi- 
cant modifications even if only one measured datum is eliminated without 
an appreciable decrease in the correlation coefficient. 

DEDUCTIONS 

The single coefficients of the polynom [eqn. (5)] have no direct physical 
meaning but they describe the DTG curves with great accuracy and show a 
close correlation with each other. This is an indirect verification of the very 

Fig. 8. The interdependence between the A and B coefficients of the polynom. 
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Fig. 9. The interdependence between the B and C coefficients of the polynom. 
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Fig. 10. The interdependence between the B and D coefficients of the polynom. 
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Fig. 11. The interdependence between the C and D coefficients of the polynom. 
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formal descriptive character of the examined differential equations. It fol- 
lows from the close correlation of the calculated kinetic constants that the 
activation energy can be used only together with the values of the suitable 
pre-exponential factor and the reaction order. In spite of this there are 
numerous publications giving only the activation energy values (e.g., refs. 18, 
27, 45, 46). Criado and Morales [47] refer to this problem but from another 
aspect. 

It follows from the strict correlation among the reaction orders (see Figs. 
5-7) that there is no descriptive advantage of using more than three 
constants instead of A, E and n. The various suggested differential equations 
cannot reveal directly the mechanism of the examined thermal decomposi- 
tion process. They are more complex and so they are not reducible to only 
one or a few rate determining processes in this way. On the basis of 
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theoretical and practical knowledge, eqn. (4) was expected to be the best one 
for the interpretation of the measured data for calcium carbonate decom- 
position, but of the equations tested in Tables2 and 3 it seems to be the 
worst (e.g., the data for E). It is obvious that the idea incorporated in the 
equation is not wrong, but the practice of its development has not yet been 
found. 

The experience obtained by the extreme change of the sample mass proves 
that the elimination of the superimposition of physical and chemical processes 
is impossible under the present measuring conditions. It is possible that, with 
presently available equipment, to raise such a requirement is not ap- 
propriate. 

The close connection among the kinetic constants is a fact, consequently it 
is possible to change one of them with suitable modification of the others 
without the inevitable decrease in the fit of the descripton of the examined 
process. This can be proved to be so by examination of the literary data. 
Thus in spite of the views of Cremer [30], the main cause of the C.E. would 
not seem to be the unidirectional change of the entropy and enthalpy of 
activation, but due to the polynom-like very formal character of the differen- 
tial equations. Consequently, the calculation of the kinetic constants by the use 
of different differential equations or by changing one of the constants, for 
example the reaction order, in a suitable range can be used as a method to 
determine the (C.E.),, the In A vs. E function of a single measurement. The 
(C.E.), as the compensation effect of the single measurement (in spite of the 
usual idea of the C.E.) seems to be very suitable for the examination of the 
measuring conditions on the investigated process giving some deeper qualitative 
and quantitative information about it. The data shown in Tables 2 and 3, as 
well as in Fig. 2 show that the equation of the (C.E.), plot changes as a result. 
The slope of the plot can indicate the effect of the change of the sample mass 
and other parameters. 

In relation to the problems cited by Garn above [27] it can be stated that 
the compensation effect should be anticipated in all cases, because it does 
not need any physical principles. Even if it can be a consequence of the lack 
of direct physical basis and its cause can be the structure of the descriptive 
system, its determination may still be instructive in deducing not only the 
nature of the temperature dependence but the effect of the measuring 
conditions generally. 

SOME APPLICATIONS OF THE DEDUCTIONS 

Indication of the change of the decomposition kinetics 

According to the reports of Norris et al. [48], the k decomposition velocity 
is relatively insensitive to the exact value of the order of reaction n. The 
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alteration of the reaction order serves as a method to identify “the best 
kinetic constants”, but it follows from the deductions made above that it is a 
method of determining the (C.E.), plot, and this would serve to indicate the 
effect of the measuring conditions on the kinetics of the examined process. 
Table4, for example, shows the effect of the retardant on the degradation of 
polyethylene terephthalate [49]. In this case the reaction order n was altered 
systematically between 0.1 and 2.0 looking for the best fit between the 
measured and calculated data. Part A of Table4 shows some calculated 
kinetic constants [49] and part B the regression coefficients of the (C.E.),. 

It is obvious from the regression coefficients (Table4) that the data of the 
specimens containing a retardant form a group and the slopes of their (C.E.), 
plots are characteristically different from the plot of the pure polyethylene 
terephthalate. From this it is concluded that the degradation kinetics have 
been modified by the retardant. 

Other literary data also verify the usefulness of this method. Table 5 shows 
the computed regression coefficients of the (C.E.), plots of some decomposi- 
tion processes calculated by various orders of reaction between 0 and 2 [50]. 

As another example, the kinetic constants were calculated by different % 
conversion [38]. From the published data the regression coefficients of the 
1nA = a,E + a, equation are 

Uncatalyzed Catalyzed 

-2.6410 - 1.7256 
0.2192 0.2295 
0.9999 1 .oOOo 

TABLE 5 

Regression coefficients of the (C.E.), functions by changed reaction order [50] 
lnA=a,E+a,; E(kJmole-‘) 

NH&H,O, NH,BF, (NH,),C,Q,*H,O (NH&W% 

a1 -0.1289 -2.8784 
a0 0.2813 0.2126 
r 1.0000 1.0000 

dehydration 

- 1.5643 
0.3196 
0.9998 

decomposition 

- 2.5605 
0.2359 
0.9999 

(NH,),SO,.H,O dehydration (NH&SO, decomposition 

a1 - 1.9243 - 1.4070 
a0 0.3465 0.3055 
r 1.0000 1.0000 
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Consequently, the difference between the uncatalyzed and catalyzed (with 
p-toluene sulphonic acid) kinetics of the cyclization of a poly (o-hydroxy- 
amide) have been characterized by the parallel slip of the (C.E.), plots. 

The C.E. and the homogeneous phase 

In spite of a common current opinion in recent thermoanalytical literature 
that the C.E. in the heterogeneous phase is observable only as a result of 
experimental mistake or error in the evaluation, “relatively simple concepts 
have been very successful in explaining the C.E. of solvents and substituents 
on rates” of reactions in the homogeneous phase [51]. One cannot explain, 
however, the compensation between activation energy and pre-exponential 
factor in solution in terms of purely kinetic effects [51], and the problem is 
increased by the fact that the C.E. has also been observed in relationship 
with the concentration, moreover in the gas phase. 

The decomposition of m-dichlorodiphenyl disulphide in solution serves as 
an example of the C.E. being observed in the liquid phase [52]. The 
decomposition temperature measured by the isoteniscope, and activation 
energy calculated by using the temperature dependence on the velocity of the 
increase in pressure, are shown in Table6 as a function of concentration. 

The activation energy changes with concentration but this change cannot 
be explained in terms of solvent-solute interaction; it is only understandable 
in terms of the C.E. (Fig. 12). The decomposition temperature depends 
unambiguously on the logarithm of the concentration. 

As an example for the C.E. in the gas phase some collected data on the 
dimerization of cyclopentane are given in Table 7 [53-561. A further example 
is the kinetic data on the thermal cracking of ethane and propane and their 
mixtures calculated by Froment et al. [57] which are plotted in Fig. 13. The 
measurements were made in a pilot plant looking for the effect of the total 
and the partial pressure under conditions representative of industrial opera- 
tion. The authors found that the agreement with the industrial data were 
excellent but they made no comment on the C.E. It is obvious from Fig. 13, 
however, that the calculated data show the C.E. with a very good fit, 
indicating that the problems discussed above concerning the heterogeneous 
phase seem to exist in the homogeneous phase, too. 

All this may be taken to express the complexity of the examined processes 

TABLE 6 

Decomposition of m-dichlorodiphenyl disulphide in solution [52] 

5% m-DDD 3 5 10 20 50 100 
Dec. temp. (“C) 276.5 263.0 250.5 236.0 222.0 221.0 
E(kJ mole-‘) 347.52 212.70 150.73 149.48 162.46 158.68 
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Fig. 12. The C.E. in the case of the decomposition of m-diphenyl disulphide in solution. 

and that the mechanism of the chemical reaction is complicated both in the 
heterogeneous and homogeneous phase. 

Thermogravimetric data and industrial processes 

Because of its formal character eqn. (1) has been used for the description 
of some industrial experiences published in the literature [%I, though the 
usual conditions of kinetic measurements cannot be assured under condi- 
tions of this industrial production. Using similar production systems and 
200-300 pm particle size,‘the degree of decomposition of calcium carbonate 
was 10% in the pre-heater of one cement works at 790°C and about 60% at 
845”C, whilst 80% decomposition was measured at 860°C in the pre-calcina- 
tor of another factory [58]. The Arrhenius parameters estimated from these 
data are: In A = 31.6 and E = 351.27 kJ mole-‘, and these agree closely with 
the TG data showing a C.E. effect (Fig. 2). 

Even the simplest extrapolation makes the relation likely between the 
thermogravimetric measurements and the industrial data. The temperature 
data for 10% and 90% conversion are shown in Fig. 14 as a function of the 
logarithm of the sample mass. Using these data, the extrapolated decomposi- 

TABLE 7 

Kinetic constants of the dimerization of cyclopentadiene 

In A 14.16 14.48 14.98 15.53 
E (W mole-‘) 67.91 68.67 70.80 74.74 
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Fig. 13. Kinetic constants of the thermal cracking of ethane and propane and their mixtures. 
X , Ethane; 0, propane; @, 0, mixtures. 
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tion temperature of a 350 g sample seems to be 970°C and 115O”C, respec- 
tively, in good agreement with industrial practice. 

A big difference exists between the conditions of the thermoanalytical 
measurements and the industrial processes, but it can be shown that they are 
related and this can be exploited in future work. 
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